Fast and large-scale unsupervised relation extraction

Sho Takase, Naoaki Okazaki, Kentaro Inui

研究成果: Paper査読

7 被引用数 (Scopus)

抄録

A common approach to unsupervised relation extraction builds clusters of patterns expressing the same relation. In order to obtain clusters of relational patterns of good quality, we have two major challenges: the semantic representation of relational patterns and the scalability to large data. In this paper, we explore various methods for modeling the meaning of a pattern and for computing the similarty of patterns mined from huge data. In order to achieve this goal, we apply algorithms for approximate frequency counting and efficient dimension reduction to unsupervised relation extraction. The experimental results show that approximate frequency counting and dimension reduction not only speeds up similarity computation but also improves the quality of pattern vectors.

本文言語English
ページ96-105
ページ数10
出版ステータスPublished - 2015
イベント29th Pacific Asia Conference on Language, Information and Computation, PACLIC 2015 - Shanghai, China
継続期間: 2015 10月 302015 11月 1

Other

Other29th Pacific Asia Conference on Language, Information and Computation, PACLIC 2015
国/地域China
CityShanghai
Period15/10/3015/11/1

ASJC Scopus subject areas

  • 人工知能
  • 人間とコンピュータの相互作用
  • 言語学および言語

フィンガープリント

「Fast and large-scale unsupervised relation extraction」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル