Fault detection of a vibration mechanism by spectrum classification with a divergence-based kernel

T. Ishigaki, T. Higuchi, K. Watanabe

研究成果: Article査読

8 被引用数 (Scopus)

抄録

The present study describes a frequency spectrum classification method for fault detection of the LP gas pressure regulator using support vector machines (SVMs). Conventional diagnosis methods are inefficient because of problems such as significant noise and non-linearity of the detection mechanism. In order to address these problems, a machine learning method with a divergence-based kernel is introduced into spectrum classification. The authors use the normalised frequency spectrum directly as input with the divergence-based kernel. The proposed method is applied to the vibration spectrum classification of the rubber diaphragm in a pressure regulator. As a result, the classification performance using the divergence-based kernel is shown to be better than when using common kernels such as the Gaussian kernel or the polynomial kernel. The high classification performance is achieved by using an inexpensive sensor system and the machine learning method. The proposed method is widely applicable to other spectrum classification applications without limitation on the generality if the spectra are normalised.

本文言語English
ページ(範囲)518-529
ページ数12
ジャーナルIET Signal Processing
4
5
DOI
出版ステータスPublished - 2010 10月 1
外部発表はい

ASJC Scopus subject areas

  • 信号処理
  • 電子工学および電気工学

フィンガープリント

「Fault detection of a vibration mechanism by spectrum classification with a divergence-based kernel」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル