Federated Learning of Neural Network Models with Heterogeneous Structures

Kundjanasith Thonglek, Keichi Takahashi, Kohei Ichikawa, Hajimu Iida, Chawanat Nakasan

研究成果: Conference contribution

2 被引用数 (Scopus)

抄録

Federated learning trains a model on a centralized server using datasets distributed over a large number of edge devices. Applying federated learning ensures data privacy because it does not transfer local data from edge devices to the server. Existing federated learning algorithms assume that all deployed models share the same structure. However, it is often infeasible to distribute the same model to every edge device because of hardware limitations such as computing performance and storage space. This paper proposes a novel federated learning algorithm to aggregate information from multiple heterogeneous models. The proposed method uses weighted average ensemble to combine the outputs from each model. The weight for the ensemble is optimized using black box optimization methods. We evaluated the proposed method using diverse models and datasets and found that it can achieve comparable performance to conventional training using centralized datasets. Furthermore, we compared six different optimization methods to tune the weights for the weighted average ensemble and found that tree parzen estimator achieves the highest accuracy among the alternatives.

本文言語English
ホスト出版物のタイトルProceedings - 19th IEEE International Conference on Machine Learning and Applications, ICMLA 2020
編集者M. Arif Wani, Feng Luo, Xiaolin Li, Dejing Dou, Francesco Bonchi
出版社Institute of Electrical and Electronics Engineers Inc.
ページ735-740
ページ数6
ISBN(電子版)9781728184708
DOI
出版ステータスPublished - 2020 12月
外部発表はい
イベント19th IEEE International Conference on Machine Learning and Applications, ICMLA 2020 - Virtual, Miami, United States
継続期間: 2020 12月 142020 12月 17

出版物シリーズ

名前Proceedings - 19th IEEE International Conference on Machine Learning and Applications, ICMLA 2020

Conference

Conference19th IEEE International Conference on Machine Learning and Applications, ICMLA 2020
国/地域United States
CityVirtual, Miami
Period20/12/1420/12/17

ASJC Scopus subject areas

  • 人工知能
  • コンピュータ サイエンスの応用
  • コンピュータ ビジョンおよびパターン認識
  • ハードウェアとアーキテクチャ

フィンガープリント

「Federated Learning of Neural Network Models with Heterogeneous Structures」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル