Fingerprint feature extraction by combining texture, minutiae, and frequency spectrum using multi-task CNN

Ai Takahashi, Yoshinori Koda, Koichi Ito, Takafumi Aoki

研究成果: 書籍の章/レポート/Proceedings会議への寄与査読

24 被引用数 (Scopus)

抄録

Although most fingerprint matching methods utilize minutia points and/or texture of fingerprint images as fingerprint features, the frequency spectrum is also a useful feature since a fingerprint is composed of ridge patterns with its inherent frequency band. We propose a novel CNN-based method for extracting fingerprint features from texture, minutiae, and frequency spectrum. In order to extract effective texture features from local regions around the minutiae, the minutia attention module is introduced to the proposed method. We also propose new data augmentation methods, which takes into account the characteristics of fingerprint images to increase the number of images during training since we use only a public dataset in training, which includes a few fingerprint classes. Through a set of experiments using FVC2004 DB1 and DB2, we demonstrated that the proposed method exhibits the efficient performance on fingerprint verification compared with a commercial fingerprint matching software and the conventional method.

本文言語英語
ホスト出版物のタイトルIJCB 2020 - IEEE/IAPR International Joint Conference on Biometrics
出版社Institute of Electrical and Electronics Engineers Inc.
ISBN(電子版)9781728191867
DOI
出版ステータス出版済み - 2020 9月 28
イベント2020 IEEE/IAPR International Joint Conference on Biometrics, IJCB 2020 - Virtual, Online, 米国
継続期間: 2020 9月 282020 10月 1

出版物シリーズ

名前IJCB 2020 - IEEE/IAPR International Joint Conference on Biometrics

会議

会議2020 IEEE/IAPR International Joint Conference on Biometrics, IJCB 2020
国/地域米国
CityVirtual, Online
Period20/9/2820/10/1

フィンガープリント

「Fingerprint feature extraction by combining texture, minutiae, and frequency spectrum using multi-task CNN」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル