Fixed-point property of random groups

Hiroyasu Izeki, Takefumi Kondo, Shin Nayatani

研究成果: Article査読

11 被引用数 (Scopus)

抄録

In this paper, using the generalized version of the theory of combinatorial harmonic maps, we give a criterion for a finitely generated group Γ to have the fixed-point property for a certain class of Hadamard spaces, and prove a fixed-point theorem for random-group actions on the same class of Hadamard spaces. We also study the existence of an equivariant energy-minimizing map from a Γ-space to the limit space of a sequence of Hadamard spaces with the isometric actions of a finitely generated group Γ. As an application, we present the existence of a constant which may be regarded as a Kazhdan constant for isometric discrete-group actions on a family of Hadamard spaces.

本文言語English
ページ(範囲)363-379
ページ数17
ジャーナルAnnals of Global Analysis and Geometry
35
4
DOI
出版ステータスPublished - 2009 6月

ASJC Scopus subject areas

  • 分析
  • 政治学と国際関係論
  • 幾何学とトポロジー

フィンガープリント

「Fixed-point property of random groups」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル