抄録
The alignment process of ultraviolet (UV) nanoimprint lithography requires a further sophisticated method to detect infinitesimal misalignments between a synthetic quartz mold and a silicon substrate. Previously, we proposed a fluorescence-alignment method based on the analysis of the additive-type moiré fringes generated by the interferences of fluorescence emission from fluorescent UV-curable liquid filling the concave bar-mark arrays on a synthetic quartz mold and a silicon substrate. The proposed method significantly reduces the cost of mold fabrication and simplifies the in-liquid process compared to the conventional method based on multiplicative-type moiré fringes prevailing in the industry. This is because the fluorescence-alignment method is free from the problem of the refractive index matching between mold and UV-curable liquid materials. However, its position accuracy remains as large as sub-10 nm scales in principle. In this study, through simulation using image drawing and analysis software, we demonstrate that a sophisticated fluorescence alignment can realize atomic-scale precision for position accuracy by attempting the following concepts: (i) the application of the principle on position determination of a fluorescent single-molecule to that of an individual bar-mark fluorescence signal; (ii) effective use of high bit-depth of recent imaging devices; and (iii) accumulations of the information on the positions of multiple bar-marks with periodicities by fitting their fluorescence intensity profiles using a periodic function.
本文言語 | English |
---|---|
論文番号 | 062602 |
ジャーナル | Journal of Vacuum Science and Technology B |
巻 | 40 |
号 | 6 |
DOI | |
出版ステータス | Published - 2022 12月 1 |
ASJC Scopus subject areas
- 電子材料、光学材料、および磁性材料
- 器械工学
- プロセス化学およびプロセス工学
- 表面、皮膜および薄膜
- 電子工学および電気工学
- 材料化学