Frequency Trimming Method for a Disk Resonator Using Flexural Rigidity

研究成果: Article査読


This paper reports a new method for frequency trimming that has a low effect on the quality factor of a multi-ring disk resonator. The method relies on altering the flexural rigidity of the resonator while preserving the thermal time constant. Perforations that have a small effect on the resonant frequency were added to the core and periphery of the rings of a multi-ring disk resonator. The perforations at the core of the rings reduce the effect of thermal dissipation. Therefore, after trimming the peripheral perforations, the resonant frequency changes according to the number of cut perforations, while the Q-factor remains slightly unaffected. Trimming is straightforward and involves just removing a small volume at the connections of the peripheral perforations at the rings. Using numerical analysis, it was demonstrated that by applying this method, the frequency could be trimmed as much as 18.83%, while the Q-factor change was as small as 0.27%.

ジャーナルIEEJ Transactions on Sensors and Micromachines
出版ステータスPublished - 2021

ASJC Scopus subject areas

  • 機械工学
  • 電子工学および電気工学


「Frequency Trimming Method for a Disk Resonator Using Flexural Rigidity」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。