Geodesic order types

Oswin Aichholzer, Matias Korman, Alexander Pilz, Birgit Vogtenhuber

研究成果: Article査読

4 被引用数 (Scopus)

抄録

The geodesic between two points a and b in the interior of a simple polygon P is the shortest polygonal path inside P that connects a to b. It is thus the natural generalization of straight line segments on unconstrained point sets to polygonal environments. In this paper we use this extension to generalize the concept of the order type of a set of points in the Euclidean plane to geodesic order types. In particular, we show that, for any set S of points and an ordered subset B ⊂ S of at least four points, one can always construct a polygon P such that the points of B define the geodesic hull of S w.r.t. P, in the specified order. Moreover, we show that an abstract order type derived from the dual of the Pappus arrangement can be realized as a geodesic order type.

本文言語English
ページ(範囲)112-128
ページ数17
ジャーナルAlgorithmica
70
1
DOI
出版ステータスPublished - 2014 9月
外部発表はい

ASJC Scopus subject areas

  • コンピュータ サイエンス(全般)
  • コンピュータ サイエンスの応用
  • 応用数学

フィンガープリント

「Geodesic order types」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル