Global boundedness of solutions to a parabolic-parabolic chemotaxis system with local sensing in higher dimensions

Kentaro Fujie, Takasi Senba

研究成果: Article査読

1 被引用数 (Scopus)

抄録

This paper deals with classical solutions to the parabolic-parabolic system ut=Δ(Δ(v)u)inω×(0,∞),vt=Δv-v+uinω×(0,∞),∂u∂ν=∂v∂ν=0on∂ω×(0,∞),u(·,0)=u0,v(·,0)=v0inω, where ω is a smooth bounded domain in R n (n ∼ 3), Δ(v) = v -k (k > 0) and the initial data (u 0, v 0) is positive and regular. This system has striking features similar to those of the logarithmic Keller-Segel system. It is established that classical solutions of the system exist globally in time and remain uniformly bounded in time if k ϵ(0, n/(n - 2)), independently of the magnitude of mass. This constant n/(n - 2) is conjectured as the optimal range guaranteeing global existence and boundedness in the corresponding logarithmic Keller-Segel system. In the course of our analysis we introduce an auxiliary function and derive an evolution equation that it satisfies. Using refined comparison estimates we control the behavior of the nonlinear term in the equation for the auxiliary function, and this in turn yields sufficient information to control solutions of the original system.

本文言語English
ページ(範囲)3777-3811
ページ数35
ジャーナルNonlinearity
35
7
DOI
出版ステータスPublished - 2022 7月 7

ASJC Scopus subject areas

  • 統計物理学および非線形物理学
  • 数理物理学
  • 物理学および天文学(全般)
  • 応用数学

フィンガープリント

「Global boundedness of solutions to a parabolic-parabolic chemotaxis system with local sensing in higher dimensions」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル