Gradient-Based Clean Label Backdoor Attack to Graph Neural Networks

Ryo Meguro, Hiroya Kato, Shintaro Narisada, Seira Hidano, Kazuhide Fukushima, Takuo Suganuma, Masahiro Hiji

研究成果: 書籍の章/レポート/Proceedings会議への寄与査読

2 被引用数 (Scopus)

抄録

Graph neural networks (GNNs) can obtain useful information from graph structured data. Although its great capability is promising, GNNs are vulnerable to backdoor attacks, which plant a marker called trigger in victims’ models to cause them to misclassify poisoned data with triggers into a target class. In particular, a clean label backdoor attack (CLBA) on the GNNs remains largely unexplored. Revealing characteristics of the CLBA is vital from the perspective of defense. In this paper, we propose the first gradient based CLBA on GNNs for graph classification tasks. Our attack consists of two important phases, the graph embedding based pairing and the gradient based trigger injection. Our pairing makes pairs from graphs of the target class and the others to successfully plant the backdoor in the target class area in the graph embedding space. Our trigger injection embeds triggers in graphs with gradient-based scores, yielding effective poisoned graphs. We conduct experiments on multiple datasets and GNN models. Our results demonstrate that our attack outperforms the existing CLBA using fixed triggers. Our attack surpasses attack success rates of the existing CLBA by up to 50%. Furthermore, we show that our attack is difficult to detect with an existing defense.

本文言語英語
ホスト出版物のタイトルProceedings of the 10th International Conference on Information Systems Security and Privacy
編集者Gabriele Lenzini, Paolo Mori, Steven Furnell
出版社Science and Technology Publications, Lda
ページ510-521
ページ数12
ISBN(印刷版)9789897586835
DOI
出版ステータス出版済み - 2024
イベント10th International Conference on Information Systems Security and Privacy, ICISSP 2024 - Rome, イタリア
継続期間: 2024 2月 262024 2月 28

出版物シリーズ

名前International Conference on Information Systems Security and Privacy
1
ISSN(電子版)2184-4356

会議

会議10th International Conference on Information Systems Security and Privacy, ICISSP 2024
国/地域イタリア
CityRome
Period24/2/2624/2/28

フィンガープリント

「Gradient-Based Clean Label Backdoor Attack to Graph Neural Networks」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル