Hamiltonian stability for weighted measure and generalized Lagrangian mean curvature flow

Toru Kajigaya, Keita Kunikawa

研究成果: Article査読

3 被引用数 (Scopus)

抄録

In this paper, we generalize several results for the Hamiltonian stability and the mean curvature flow of Lagrangian submanifolds in a Kähler–Einstein manifold to more general Kähler manifolds including a Fano manifold equipped with a Kähler form ω∈2πc1(M) by using the method proposed by Behrndt (2011). Namely, we first consider a weighted measure on a Lagrangian submanifold L in a Kähler manifold M and investigate the variational problem of L for the weighted volume functional. We call a stationary point of the weighted volume functional f-minimal, and define the notion of Hamiltonian f-stability as a local minimizer under Hamiltonian deformations. We show such examples naturally appear in a toric Fano manifold. Moreover, we consider the generalized Lagrangian mean curvature flow in a Fano manifold which is introduced by Behrndt and Smoczyk–Wang. We generalize the result of H. Li, and show that if the initial Lagrangian submanifold is a small Hamiltonian deformation of an f-minimal and Hamiltonian f-stable Lagrangian submanifold, then the generalized MCF converges exponentially fast to an f-minimal Lagrangian submanifold.

本文言語English
ページ(範囲)140-168
ページ数29
ジャーナルJournal of Geometry and Physics
128
DOI
出版ステータスPublished - 2018 6月

ASJC Scopus subject areas

  • 数理物理学
  • 物理学および天文学(全般)
  • 幾何学とトポロジー

フィンガープリント

「Hamiltonian stability for weighted measure and generalized Lagrangian mean curvature flow」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル