TY - JOUR
T1 - Histopathological classification of cross-sectional image-negative hyperaldosteronism
AU - Yamazaki, Yuto
AU - Nakamura, Yasuhiro
AU - Omata, Kei
AU - Ise, Kazue
AU - Tezuka, Yuta
AU - Ono, Yoshikiyo
AU - Morimoto, Ryo
AU - Nozawa, Yukinaga
AU - Gomez-Sanchez, Celso E.
AU - Tomlins, Scott A.
AU - Rainey, William E.
AU - Ito, Sadayoshi
AU - Satoh, Fumitoshi
AU - Sasano, Hironobu
N1 - Publisher Copyright:
Copyright © 2017 Endocrine Society.
PY - 2017/4/1
Y1 - 2017/4/1
N2 - Context: Approximately half of patients with primary aldosteronism (PA) have clinically evident disease according to clinical (hypertension) and/or laboratory (aldosterone and renin levels) findings but do not have nodules detectable in routine cross-sectional imaging. However, the detailed histopathologic, steroidogenic, and pathobiological features of cross-sectional image-negative PA are controversial. Objective: To examine histopathology, steroidogenic enzyme expression, and aldosterone-driver gene somatic mutation status in cross-sectional image-negative hyperaldosteronism. Methods: Twenty-five cross-sectional image-negative cases were retrospectively reviewed. In situ adrenal aldosterone production capacity was determined using immunohistochemistry (IHC) of steroidogenic enzymes. Aldosterone-driver gene somatic mutation status (ATP1A1, ATP2B3, CACNA1D, and KCNJ5) was determined in the CYP11B2 immunopositive areas [n = 35; micronodule, n = 32; zona glomerulosa (ZG), n = 3] using next-generation sequencing after macrodissection. Results: Cases were classified as multiple adrenocortical micronodules (MN; n = 13) or diffuse hyperplasia (DH) of ZG (n = 12) based upon histopathological evaluation and CYP11B2 IHC.Aldosterone-driver gene somatic mutations were detected in 21 of 26 (81%) of CYP11B2-positive cortical micronodules in MN; 17 (65%) mutations were in CACNA1D, 2 (8%) in KCNJ5, and 1 each (4% each) in ATP1A1 and ATP2B. One of 6 (17%) of nodules in DH harbored somatic aldosterone-driver gene mutations (CACNA1D); however, no mutations were detected in CYP11B2-positive nonnodular DH areas. Conclusion: Morphologic evaluation and CYP11B2 IHC enabled the classification of cross-sectional image-negative hyperaldosteronism into MN and DH. Somatic mutations driving aldosterone overproduction are common in micronodules of MN, suggesting a histological entity possibly related to aldosterone-producing cell cluster development.
AB - Context: Approximately half of patients with primary aldosteronism (PA) have clinically evident disease according to clinical (hypertension) and/or laboratory (aldosterone and renin levels) findings but do not have nodules detectable in routine cross-sectional imaging. However, the detailed histopathologic, steroidogenic, and pathobiological features of cross-sectional image-negative PA are controversial. Objective: To examine histopathology, steroidogenic enzyme expression, and aldosterone-driver gene somatic mutation status in cross-sectional image-negative hyperaldosteronism. Methods: Twenty-five cross-sectional image-negative cases were retrospectively reviewed. In situ adrenal aldosterone production capacity was determined using immunohistochemistry (IHC) of steroidogenic enzymes. Aldosterone-driver gene somatic mutation status (ATP1A1, ATP2B3, CACNA1D, and KCNJ5) was determined in the CYP11B2 immunopositive areas [n = 35; micronodule, n = 32; zona glomerulosa (ZG), n = 3] using next-generation sequencing after macrodissection. Results: Cases were classified as multiple adrenocortical micronodules (MN; n = 13) or diffuse hyperplasia (DH) of ZG (n = 12) based upon histopathological evaluation and CYP11B2 IHC.Aldosterone-driver gene somatic mutations were detected in 21 of 26 (81%) of CYP11B2-positive cortical micronodules in MN; 17 (65%) mutations were in CACNA1D, 2 (8%) in KCNJ5, and 1 each (4% each) in ATP1A1 and ATP2B. One of 6 (17%) of nodules in DH harbored somatic aldosterone-driver gene mutations (CACNA1D); however, no mutations were detected in CYP11B2-positive nonnodular DH areas. Conclusion: Morphologic evaluation and CYP11B2 IHC enabled the classification of cross-sectional image-negative hyperaldosteronism into MN and DH. Somatic mutations driving aldosterone overproduction are common in micronodules of MN, suggesting a histological entity possibly related to aldosterone-producing cell cluster development.
UR - http://www.scopus.com/inward/record.url?scp=85017308987&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85017308987&partnerID=8YFLogxK
U2 - 10.1210/jc.2016-2986
DO - 10.1210/jc.2016-2986
M3 - Article
C2 - 28388725
AN - SCOPUS:85017308987
SN - 0021-972X
VL - 102
SP - 1182
EP - 1192
JO - Journal of Clinical Endocrinology and Metabolism
JF - Journal of Clinical Endocrinology and Metabolism
IS - 4
ER -