Impact of high-speed nanodroplets on various pathogenic bacterial cell walls

Yurina Tamura, Masato Kawamura, Takehiko Sato, Tomoki Nakajima, Siwei Liu, Takumi Sato, Shigeru Fujimura

研究成果: ジャーナルへの寄稿学術論文査読

1 被引用数 (Scopus)

抄録

Although the development of disinfection technologies with novel mechanisms has stagnated, we demonstrate the bactericidal effects and mechanisms of high-speed nanodroplet generation technology. The first development of this technology in 2017 gushes out a water droplet of 10 nm in size at 50 m/s; however, the target surface does not become completely wet. Nanodroplets were exposed to biofilm models of Staphylococcus aureus, Pseudomonas aeruginosa, Escherichia coli, and Serratia marcescens. This phenomenon was verified when the nanodroplets collide with the surface of the bacteria at an impact pressure of ~75 MPa. S. aureus was exposed to nanodroplets for 30 seconds at 75 MPa, which exploded the bacterial body and completely sterilized. Eighteen MPa damaged the bacterial surface, causing peptidoglycan leakage. S. aureus was repaired and survives in this state. In contrast, in Gram-negative bacteria, nanodroplets with 18 MPa penetrated some biofilm-forming bacteria but did not hit all of them, and the viable count was not significantly reduced. Although all three bacterial species were completely sterilized at 75 MPa, the disinfectant effect was affected by the biomass of the biofilm formed. In summary, our findings prove that nanodroplets at 18 MPa on the bacterial surface were ineffective in killing bacteria, whereas at 75 MPa, all four bacterial species were completely sterilized. The disinfection mechanism involved a high-velocity collision of nanodroplets with the bacteria, physically destroying them. Our results showed that disinfection using this technology could be an innovative method that is completely different from existing disinfection techniques.

本文言語英語
論文番号e00139-24
ジャーナルJournal of Bacteriology
206
11
DOI
出版ステータス出版済み - 2024 11月

フィンガープリント

「Impact of high-speed nanodroplets on various pathogenic bacterial cell walls」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル