Improving Resource Utilization in Data Centers using an LSTM-based Prediction Model

Kundjanasith Thonglek, Kohei Ichikawa, Keichi Takahashi, Hajimu Iida, Chawanat Nakasan

研究成果: Conference contribution

13 被引用数 (Scopus)

抄録

Data centers are centralized facilities where computing and networking hardware are aggregated to handle large amounts of data and computation. In a data center, computing resources such as CPU and memory are usually managed by a resource manager. The resource manager accepts resource requests from users and allocates resources to their applications. A commonly known problem in resource management is that users often request more resources than their applications actually use. This leads to the degradation of overall resource utilization in a data center. This paper aims to improve resource utilization in data centers by predicting the required resource for each application. We designed and implemented a neural network model based on Long Short-Term Memory (LSTM) to predict more efficient resource allocation for a job based on historical data. Our model has two LSTM layers each of which learns the relationship between: (1) allocation and usage, and (2) CPU and memory. We used Googles cluster-usage trace, which contains a trace of resource allocation and usage for each job executed on a Google data center, to train our neural network. Googles cluster scheduler simulator was used to evaluate our proposed method. Our simulation indicated that the proposed method improved the CPU utilization and memory utilization by 10.71% and 47.36%, respectively, compared to a conventional resource manager. Moreover, we discovered that increasing the memory cell size of our LSTM model improves the accuracy of the prediction in return for longer training time.

本文言語English
ホスト出版物のタイトルProceedings - 2019 IEEE International Conference on Cluster Computing, CLUSTER 2019
出版社Institute of Electrical and Electronics Engineers Inc.
ISBN(電子版)9781728147345
DOI
出版ステータスPublished - 2019 9月
外部発表はい
イベント2019 IEEE International Conference on Cluster Computing, CLUSTER 2019 - Albuquerque, United States
継続期間: 2019 9月 232019 9月 26

出版物シリーズ

名前Proceedings - IEEE International Conference on Cluster Computing, ICCC
2019-September
ISSN(印刷版)1552-5244

Conference

Conference2019 IEEE International Conference on Cluster Computing, CLUSTER 2019
国/地域United States
CityAlbuquerque
Period19/9/2319/9/26

ASJC Scopus subject areas

  • ソフトウェア
  • ハードウェアとアーキテクチャ
  • 信号処理

フィンガープリント

「Improving Resource Utilization in Data Centers using an LSTM-based Prediction Model」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル