Inverse mellin transformation of continuous singular value decomposition: A route to holographic renormalization

研究成果: Article査読

2 被引用数 (Scopus)

抄録

We examine holographic renormalization by singular value decomposition (SVD) of matrix data generated by a Monte Carlo snapshot of the two-dimensional (2D) classical Ising model at criticality. Taking the continuous limit of the SVD enables us to find the mathematical form of each SVD component by the inverse Mellin transformation as well as the power-law behavior of the SVD spectrum. We find that each SVD component is characterized by the two-point spin correlator with a finite correlation length. Then, the continuous limit of the decomposition index in the SVD corresponds to the inverse of the correlation length. These features strongly indicate that the SVD contains the same mathematical structure as the holographic renormalization.

本文言語English
論文番号114001
ジャーナルjournal of the physical society of japan
85
11
DOI
出版ステータスPublished - 2016 11月 15
外部発表はい

ASJC Scopus subject areas

  • 物理学および天文学(全般)

フィンガープリント

「Inverse mellin transformation of continuous singular value decomposition: A route to holographic renormalization」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル