TY - GEN
T1 - Knowledge extraction by probabilistic cognitive structure modeling using a Bayesian network for use by a retail service
AU - Ishigaki, Tsukasa
AU - Motomura, Yoichi
AU - Dohi, Masako
AU - Kouchi, Makiko
AU - Mochimaru, Masaaki
PY - 2009
Y1 - 2009
N2 - By understanding the behavior, satisfaction level, or values of the customer, the productivity and level of customer satisfaction of a service industry can be improved. Such customer-based considerations are estimated from questionnaire data in a general manner. The useful estimation of such considerations requires effective methods for modeling the cognitive structures of customers based on such data. However, it is difficult to model the behavior or decision making process of the customer, which involves nonlinear or non-Gaussian variables, using conventional statistical modeling techniques, which assume linear or Gaussian models. The present paper describes a method of constructing a probabilistic model of the cognitive structure of the customer, which clarifies the satisfaction level and decision making process of the customer of a retail service through statistical graphical modeling. The proposed method constructs a probabilistic cognitive structure model by integrating questionnaire data and a Bayesian network, which can handle nonlinear and non-Gaussian variables as conditional probabilities. The model structure can be constructed automatically based on information criteria and can embed some of the experiences of the model designer and/or physical or social rules in advance. The proposed method is applied to an analysis of the requested function from customers regarding the continued use of an item of interest. We obtained useful knowledge for function design and marketing from the model constructed by a simulation and sensitivity analysis. The proposed method can be applied to various services that use a variety of data.
AB - By understanding the behavior, satisfaction level, or values of the customer, the productivity and level of customer satisfaction of a service industry can be improved. Such customer-based considerations are estimated from questionnaire data in a general manner. The useful estimation of such considerations requires effective methods for modeling the cognitive structures of customers based on such data. However, it is difficult to model the behavior or decision making process of the customer, which involves nonlinear or non-Gaussian variables, using conventional statistical modeling techniques, which assume linear or Gaussian models. The present paper describes a method of constructing a probabilistic model of the cognitive structure of the customer, which clarifies the satisfaction level and decision making process of the customer of a retail service through statistical graphical modeling. The proposed method constructs a probabilistic cognitive structure model by integrating questionnaire data and a Bayesian network, which can handle nonlinear and non-Gaussian variables as conditional probabilities. The model structure can be constructed automatically based on information criteria and can embed some of the experiences of the model designer and/or physical or social rules in advance. The proposed method is applied to an analysis of the requested function from customers regarding the continued use of an item of interest. We obtained useful knowledge for function design and marketing from the model constructed by a simulation and sensitivity analysis. The proposed method can be applied to various services that use a variety of data.
KW - Bayesian network
KW - Knowledge discovery
KW - Probabilistic modeling
KW - Production analysis
UR - http://www.scopus.com/inward/record.url?scp=74749084471&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=74749084471&partnerID=8YFLogxK
U2 - 10.1145/1643823.1643850
DO - 10.1145/1643823.1643850
M3 - Conference contribution
AN - SCOPUS:74749084471
SN - 9781605588292
T3 - Proceedings of the International Conference on Management of Emergent Digital EcoSystems, MEDES '09
SP - 141
EP - 148
BT - Proceedings of the International Conference on Management of Emergent Digital EcoSystems, MEDES '09
T2 - 1st ACM International Conference on Management of Emergent Digital EcoSystems, MEDES '09
Y2 - 27 October 2009 through 30 October 2009
ER -