Local existence in time of solutions to the elliptic-hyperbolic Davey-Stewartson system without smallness condition on the data

研究成果: Article査読

21 被引用数 (Scopus)

抄録

We study the initial value problem for the elliptic-hyperbolic Davey-Stewartson systems (equation presented) where Δ = ∂2x1 + ∂2x2, c1, C2 ∈ R, u is a complex valued function and φ is a real valued function. When (c1,c2) = (-1,2) the system (*) is called DSI equation in the inverse scattering literature. Our purpose in this paper is to prove the local existence of a unique solution to (*) in the Sobolev space H2(R2) without the smallness condition on the data which were assumed in previous works [7], [17], [19], [26]. Our result is a positive answer to Question 7 in [24].

本文言語English
ページ(範囲)133-164
ページ数32
ジャーナルJournal d'Analyse Mathematique
73
DOI
出版ステータスPublished - 1997 1月 1
外部発表はい

ASJC Scopus subject areas

  • 分析
  • 数学 (全般)

フィンガープリント

「Local existence in time of solutions to the elliptic-hyperbolic Davey-Stewartson system without smallness condition on the data」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル