抄録
We study discrete-time quantum walks on a half line by means of spectral analysis. Cantero et al. [1] showed that the CMV matrix, which gives a recurrence relation for the orthogonal Laurent polynomials on the unit circle [2], expresses the dynamics of the quantum walk. Using the CGMV method introduced by them, the name is taken from their initials, we obtain the spectral measure for the quantum walk. As a corollary, we give another proof for localization of the quantum walk on homogeneous trees shown by Chisaki et al. [3].
本文言語 | English |
---|---|
ページ(範囲) | 485-495 |
ページ数 | 11 |
ジャーナル | Quantum Information and Computation |
巻 | 11 |
号 | 5-6 |
出版ステータス | Published - 2011 5月 1 |
ASJC Scopus subject areas
- 理論的コンピュータサイエンス
- 統計物理学および非線形物理学
- 核物理学および高エネルギー物理学
- 数理物理学
- 物理学および天文学(全般)
- 計算理論と計算数学