抄録
Direct bonding of a diamond (100) substrate and a Si wafer was achieved at 250°C under atmospheric conditions. Prior to the bonding process, the diamond substrate was treated with H2SO4/H2O2 and NH3/H2O2 mixtures, whereas the Si wafer was irradiated using oxygen plasma. By applying the pressure during the annealing process, the substrates were entirely bonded, except for the contaminated areas. The bonded specimen was fractured when a shear force of 1.7 MPa was applied. The electron microscopic observation indicated that the diamond and Si substrates were atomically bonded through a 3-nm-thick SiO2 layer without significant loss of diamond crystallinity. The integration of diamond (100) substrates on an Si wafer would contribute to the fabrication of future diamond devices.
本文言語 | English |
---|---|
ページ(範囲) | 52-55 |
ページ数 | 4 |
ジャーナル | Scripta Materialia |
巻 | 191 |
DOI | |
出版ステータス | Published - 2021 1月 15 |
外部発表 | はい |
ASJC Scopus subject areas
- 材料科学(全般)
- 凝縮系物理学
- 材料力学
- 機械工学
- 金属および合金