TY - JOUR
T1 - Low-Temperature-Processed Brookite-Based TiO 2 Heterophase Junction Enhances Performance of Planar Perovskite Solar Cells
AU - Shahiduzzaman, Md
AU - Visal, Sem
AU - Kuniyoshi, Mizuki
AU - Kaneko, Tetsuya
AU - Umezu, Shinjiro
AU - Katsumata, Tetsuhiro
AU - Iwamori, Satoru
AU - Kakihana, Masato
AU - Taima, Tetsuya
AU - Isomura, Masao
AU - Tomita, Koji
N1 - Funding Information:
This study was supported in part by Research and Study Project of Tokai University General Research Organization. We thank Professor Dr. Tsutomu Miyasaka and Dr. Trilok Singh (Toin University of Yokohama) for valuable discussions.
Publisher Copyright:
© 2018 American Chemical Society.
PY - 2019/1/9
Y1 - 2019/1/9
N2 - In the design of electron-transport layers (ETLs) to enhance the efficiency of planar perovskite solar cells (PSCs), facile electron extraction and transport are important features. Here, we consider the effects of different titanium oxide (TiO 2 ) polymorphs, anatase and brookite. We design and fabricate high-phase-purity, single-crystalline, highly conductive, and low-temperature (<180 °C)-processed brookite-based TiO 2 heterophase junctions on fluorine-doped tin oxide (FTO) as the substrate. We test and compare single-phase anatase (A) and brookite (B) and heterophase anatase-brookite (AB) and brookite-anatase (BA) as ETLs in PSCs. The power-conversion efficiencies (PCEs) of PSCs with low-temperature-processed single-layer FTO-B as the ETL were as high as 14.92%, which is the highest reported efficiency of FTO-B-based single-layer PSC. This implies that FTO-B serves as an active phase and can be a potential candidate as an n-type ETL scaffold in planar PSCs. Moreover, the surface of highly crystalline brookite TiO 2 exhibits a tendency toward interparticle necking, leading to the formation of compact scaffolds. Furthermore, PSCs with heterophase junction FTO-AB ETLs exhibited PCEs as high as 16.82%, which is superior to those of PSCs with single-phase anatase (FTO-A) and brookite (FTO-B) as the ETLs (13.86% and 14.92%, respectively). In addition, the PSCs with FTO-AB exhibited improved efficiency and decreased hysteresis compared with those with FTO-BA (13.45%) due to the suitable band alignment with the perovskite layer, which resulted in superior photogenerated charge-carrier extraction and reduced charge accumulation at the interface between the heterophase junction and perovskite. Thus, the present work presents an effective strategy by which to develop heterophase junction ETLs and manipulate the interfacial energy band to further improve the performance of planar PSCs and enable the clean and eco-friendly fabrication of low-cost mass production.
AB - In the design of electron-transport layers (ETLs) to enhance the efficiency of planar perovskite solar cells (PSCs), facile electron extraction and transport are important features. Here, we consider the effects of different titanium oxide (TiO 2 ) polymorphs, anatase and brookite. We design and fabricate high-phase-purity, single-crystalline, highly conductive, and low-temperature (<180 °C)-processed brookite-based TiO 2 heterophase junctions on fluorine-doped tin oxide (FTO) as the substrate. We test and compare single-phase anatase (A) and brookite (B) and heterophase anatase-brookite (AB) and brookite-anatase (BA) as ETLs in PSCs. The power-conversion efficiencies (PCEs) of PSCs with low-temperature-processed single-layer FTO-B as the ETL were as high as 14.92%, which is the highest reported efficiency of FTO-B-based single-layer PSC. This implies that FTO-B serves as an active phase and can be a potential candidate as an n-type ETL scaffold in planar PSCs. Moreover, the surface of highly crystalline brookite TiO 2 exhibits a tendency toward interparticle necking, leading to the formation of compact scaffolds. Furthermore, PSCs with heterophase junction FTO-AB ETLs exhibited PCEs as high as 16.82%, which is superior to those of PSCs with single-phase anatase (FTO-A) and brookite (FTO-B) as the ETLs (13.86% and 14.92%, respectively). In addition, the PSCs with FTO-AB exhibited improved efficiency and decreased hysteresis compared with those with FTO-BA (13.45%) due to the suitable band alignment with the perovskite layer, which resulted in superior photogenerated charge-carrier extraction and reduced charge accumulation at the interface between the heterophase junction and perovskite. Thus, the present work presents an effective strategy by which to develop heterophase junction ETLs and manipulate the interfacial energy band to further improve the performance of planar PSCs and enable the clean and eco-friendly fabrication of low-cost mass production.
KW - Low-temperature processing
KW - TiO heterophase junction
KW - brookite TiO nanoparticles
KW - planar perovskite solar cells
UR - http://www.scopus.com/inward/record.url?scp=85059622540&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85059622540&partnerID=8YFLogxK
U2 - 10.1021/acs.nanolett.8b04744
DO - 10.1021/acs.nanolett.8b04744
M3 - Article
C2 - 30582702
AN - SCOPUS:85059622540
SN - 1530-6984
VL - 19
SP - 598
EP - 604
JO - Nano Letters
JF - Nano Letters
IS - 1
ER -