Machine learning prediction of inter-fragment interaction energies between ligand and amino-acid residues on the fragment molecular orbital calculations for Janus kinase – inhibitor complex

Shusuke Tokutomi, Kohei Shimamura, Kaori Fukuzawa, Shigenori Tanaka

研究成果: Article査読

2 被引用数 (Scopus)

抄録

Inter-Fragment Interaction Energies (IFIEs) obtained by Fragment Molecular Orbital (FMO) method can quantitatively measure the effective interactions between ligand and residues in protein, which are therefore useful for drug discovery. However, it has not been clarified whether the IFIEs can be reproduced using only geometrical (e.g., interatomic distances) information of biomolecular complex without resort to explicit FMO calculations. In this study, through machine learning technique, we propose a highly accurate reproduction or prediction scheme for ligand-protein IFIEs using only the distance information as descriptors, thereby drastically saving the computational cost in FMO analysis for a variety of conformations.

本文言語English
論文番号137883
ジャーナルChemical Physics Letters
757
DOI
出版ステータスPublished - 2020 10月 16
外部発表はい

ASJC Scopus subject areas

  • 物理学および天文学(全般)
  • 物理化学および理論化学

フィンガープリント

「Machine learning prediction of inter-fragment interaction energies between ligand and amino-acid residues on the fragment molecular orbital calculations for Janus kinase – inhibitor complex」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル