Magnetorheological Elastomer Films with Controlled Anisotropic Alignment of Polystyrene-Modified Fe3O4Nanoplates

Chen Shen, Masaki Matsubara, Tomomi Masui, Hiroyuki Kishimoto, Shinya Yamanaka, Atsushi Muramatsu, Kiyoshi Kanie

研究成果: Article査読

2 被引用数 (Scopus)


To develop high-performance magnetorheological (MR) elastomer (MRE) films, we design a facile method to prepare MRE composites under an external magnetic field, which enables magnetite (Fe3O4) nanoplates to align in synthetic rubbers at room temperature. The introduction of polystyrene (PS) chains onto the surface of Fe3O4 nanoplates ensures the dispersion stability and interfacial compatibility of Fe3O4 nanoplates with synthetic rubbers. We find that several Fe3O4 nanoplates can be surrounded by PS chains to form special spiral structures. The fluidity and chain-like structures of magnetic rubbers are confirmed upon application of an external magnetic field under high temperatures. In addition, special anisotropic alignment can be formed in synthetic rubbers, and the structures can still be maintained even after vulcanization treatment. Rheological measurements indicate that the anisotropic alignment reinforces the rheological properties based on a comparison of the MRE films with anisotropic alignment and isotropic alignment. Fe3O4 nanospheres with isotropic shapes are introduced into the MRE films for a comparative experiment. The results reveal that PS-modified Fe3O4 nanoplates with spiral structures exhibit a magnetic field-responsive behavior that leads not only to the formation of a uniaxial alignment nematic structure but also to enhancement of the rheological performance of MRE films.

ジャーナルACS Applied Polymer Materials
出版ステータスPublished - 2022 10月 14

ASJC Scopus subject areas

  • プロセス化学およびプロセス工学
  • ポリマーおよびプラスチック
  • 有機化学


「Magnetorheological Elastomer Films with Controlled Anisotropic Alignment of Polystyrene-Modified Fe3O4Nanoplates」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。