Majority algorithm: A formation for neural networks with the quantized connection weights

Cheol Young Park, Koji Nakajima

研究成果: Article査読

1 被引用数 (Scopus)

抄録

In this paper, we propose the majority algorithm to choose the connection weights for the neural networks with quantized connection weights of ±1 and 0. \Ve also obtained the layered network to solve the parity problem with the input of arbitrary number N through an application of this algorithm. The network can be expected to have the same ability of generalization as the network trained with learning rules. This is because it is possible to decide the connection weights, regardless of the size of the training set. One can decide connection weights without learning according to our case study. Thus, we expect that the proposed algorithm may be applied for a realtime processing.

本文言語English
ページ(範囲)1059-1064
ページ数6
ジャーナルIEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences
E83-A
6
出版ステータスPublished - 2000
外部発表はい

ASJC Scopus subject areas

  • 信号処理
  • コンピュータ グラフィックスおよびコンピュータ支援設計
  • 電子工学および電気工学
  • 応用数学

フィンガープリント

「Majority algorithm: A formation for neural networks with the quantized connection weights」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル