Merged Multi-CNN with Parameter Reduction for Face Attribute Estimation

Hiroya Kawai Koichi Ito, Takafumi Aoki

研究成果: 書籍の章/レポート/Proceedings会議への寄与査読

1 被引用数 (Scopus)

抄録

This paper proposes a face attribute estimation method using Merged Multi-CNN (MM-CNN). The proposed method merges single-task CNNs into one CNN by adding merging points and reduces the number of parameters by removing the fully-connected layers. We also propose a new idea of reducing parameters of CNN called Convolutionalization for Parameter Reduction (CPR), which estimates attributes using only convolution layers, in other words, does not need any fully-connected layers to estimate attributes from extracted features. Through a set of experiments using the Celeb A and LFW-a datasets, we demonstrated that MM- CNN with CPR exhibits higher efficiency of face attribute estimation than conventional methods.

本文言語英語
ホスト出版物のタイトル2019 International Conference on Biometrics, ICB 2019
出版社Institute of Electrical and Electronics Engineers Inc.
ISBN(電子版)9781728136400
DOI
出版ステータス出版済み - 2019 6月
イベント2019 International Conference on Biometrics, ICB 2019 - Crete, ギリシャ
継続期間: 2019 6月 42019 6月 7

出版物シリーズ

名前2019 International Conference on Biometrics, ICB 2019

会議

会議2019 International Conference on Biometrics, ICB 2019
国/地域ギリシャ
CityCrete
Period19/6/419/6/7

フィンガープリント

「Merged Multi-CNN with Parameter Reduction for Face Attribute Estimation」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル