Microlocal study of topological Radon transforms and real projective duality

Yutaka Matsui, Kiyoshi Takeuchi

研究成果: Article査読

5 被引用数 (Scopus)

抄録

Various topological properties of projective duality between real projective varieties and their duals are obtained by making use of the microlocal theory of (subanalytically) constructible sheaves developed by Kashiwara [M. Kashiwara, Index theorem for constructible sheaves, Astérisque 130 (1985) 193-209] and Kashiwara-Schapira [M. Kashiwara, P. Schapira, Sheaves on Manifolds, Grundlehren Math. Wiss., vol. 292, Springer, Berlin-Heidelberg-New York, 1990]. In particular, we prove in the real setting some results similar to the ones proved by Ernström in the complex case [L. Ernström, Topological Radon transforms and the local Euler obstruction, Duke Math. J. 76 (1994) 1-21]. For this purpose, we describe the characteristic cycles of topological Radon transforms of constructible functions in terms of curvatures of strata in real projective spaces.

本文言語English
ページ(範囲)191-224
ページ数34
ジャーナルAdvances in Mathematics
212
1
DOI
出版ステータスPublished - 2007 6月 20
外部発表はい

ASJC Scopus subject areas

  • 数学 (全般)

フィンガープリント

「Microlocal study of topological Radon transforms and real projective duality」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル