TY - JOUR
T1 - Microparticle impact–induced bond strength in metals peaks with velocity
AU - Tang, Qi
AU - Ichikawa, Yuji
AU - Hassani, Mostafa
N1 - Publisher Copyright:
Copyright © 2025 the Author(s).
PY - 2025/4/8
Y1 - 2025/4/8
N2 - Supersonic impact of metallic microparticles onto metallic substrates generates extreme interfacial deformation and high contact pressures, enabling solid-state metallic bonding. Although higher impact velocities are generally believed to improve bond quality and mechanical properties in materials formed by supersonic impact deposition, here we report a peak in bond strength for single microparticle impact bonding, followed by a decline at higher impact velocities. Our in situ micromechanical measurements of interfacial strength for Al microparticles bonded to Al substrates reveal a three-fold increase from the critical bonding velocity (800 m/s) to a peak strength around 1,060 m/s. Interestingly, further increase in impact velocity results in a rapid decline in local interfacial strength. The decline continues up to the highest velocity studied, 1,337 m/s, which is well below the threshold required to induce melting or erosion. We show that a mechanistic transition from material strengthening to intensified elastic recovery is responsible for the peak strength in impact-induced bonding, with evidence linking the intensified elastic recovery to adiabatic softening at high impact velocities. Beyond 1,000 m/s for Al, interfacial damage induced by the intensified elastic recovery offsets the strength gain from higher impact velocities, resulting in a net decline in interfacial strength. This mechanistic understanding shall offer insights into the optimal design of processes that rely on impact bonding.
AB - Supersonic impact of metallic microparticles onto metallic substrates generates extreme interfacial deformation and high contact pressures, enabling solid-state metallic bonding. Although higher impact velocities are generally believed to improve bond quality and mechanical properties in materials formed by supersonic impact deposition, here we report a peak in bond strength for single microparticle impact bonding, followed by a decline at higher impact velocities. Our in situ micromechanical measurements of interfacial strength for Al microparticles bonded to Al substrates reveal a three-fold increase from the critical bonding velocity (800 m/s) to a peak strength around 1,060 m/s. Interestingly, further increase in impact velocity results in a rapid decline in local interfacial strength. The decline continues up to the highest velocity studied, 1,337 m/s, which is well below the threshold required to induce melting or erosion. We show that a mechanistic transition from material strengthening to intensified elastic recovery is responsible for the peak strength in impact-induced bonding, with evidence linking the intensified elastic recovery to adiabatic softening at high impact velocities. Beyond 1,000 m/s for Al, interfacial damage induced by the intensified elastic recovery offsets the strength gain from higher impact velocities, resulting in a net decline in interfacial strength. This mechanistic understanding shall offer insights into the optimal design of processes that rely on impact bonding.
KW - interfacial strength
KW - microparticle
KW - solid-state bonding
KW - supersonic impact
UR - https://www.scopus.com/pages/publications/105002154591
UR - https://www.scopus.com/inward/citedby.url?scp=105002154591&partnerID=8YFLogxK
U2 - 10.1073/pnas.2424355122
DO - 10.1073/pnas.2424355122
M3 - Article
C2 - 40163731
AN - SCOPUS:105002154591
SN - 0027-8424
VL - 122
JO - Proceedings of the National Academy of Sciences of the United States of America
JF - Proceedings of the National Academy of Sciences of the United States of America
IS - 14
M1 - e2424355122
ER -