Minitwistor spaces, Severi varieties, and Einstein-Weyl structure

Nobuhiro Honda, Fuminori Nakata

研究成果: Article査読

5 被引用数 (Scopus)

抄録

In this article, we show that the space of nodal rational curves, which is so called a Severi variety (of rational curves), on any non-singular projective surface is always equipped with a natural Einstein-Weyl structure, if the space is 3-dimensional. This is a generalization of the Einstein-Weyl structure on the space of smooth rational curves on a complex surface, given by Hitchin. As geometric objects naturally associated to Einstein-Weyl structure, we investigate null surfaces and geodesics on the Severi varieties. Also, we see that if the projective surface has an appropriate real structure, then the real locus of the Severi variety becomes a positive definite Einstein-Weyl manifold. Moreover, we construct various explicit examples of rational surfaces having 3-dimensional Severi varieties of rational curves.

本文言語English
ページ(範囲)293-323
ページ数31
ジャーナルAnnals of Global Analysis and Geometry
39
3
DOI
出版ステータスPublished - 2011 3月

ASJC Scopus subject areas

  • 分析
  • 政治学と国際関係論
  • 幾何学とトポロジー

フィンガープリント

「Minitwistor spaces, Severi varieties, and Einstein-Weyl structure」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル