Multi-label text categorization with model combination based on F1-score maximization

Akinori Fujino, Hideki Isozaki, Jun Suzuki

研究成果: Conference contribution

31 被引用数 (Scopus)

抄録

Text categorization is a fundamental task in natural language processing, and is generally defined as a multi-label categorization problem, where each text document is assigned to one or more categories. We focus on providing good statistical classifiers with a generalization ability for multi-label categorization and present a classifier design method based on model combination and F1-score maximization. In our formulation, we first design multiple models for binary classification per category. Then, we combine these models to maximize the F1-score of a training dataset. Our experimental results confirmed that our proposed method was useful especially for datasets where there were many combinations of category labels.

本文言語English
ホスト出版物のタイトルIJCNLP 2008 - 3rd International Joint Conference on Natural Language Processing, Proceedings of the Conference
出版社Association for Computational Linguistics (ACL)
ページ823-828
ページ数6
ISBN(電子版)9780000000002
出版ステータスPublished - 2008
外部発表はい
イベント3rd International Joint Conference on Natural Language Processing, IJCNLP 2008 - Hyderabad, India
継続期間: 2008 1月 72008 1月 12

出版物シリーズ

名前IJCNLP 2008 - 3rd International Joint Conference on Natural Language Processing, Proceedings of the Conference
2

Conference

Conference3rd International Joint Conference on Natural Language Processing, IJCNLP 2008
国/地域India
CityHyderabad
Period08/1/708/1/12

ASJC Scopus subject areas

  • 言語および言語学
  • 言語学および言語

フィンガープリント

「Multi-label text categorization with model combination based on F1-score maximization」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル