Neural Radiance Field-Inspired Depth Map Refinement for Accurate Multi-View Stereo †

Shintaro Ito, Kanta Miura, Koichi Ito, Takafumi Aoki

研究成果: ジャーナルへの寄稿学術論文査読

抄録

In this paper, we propose a method to refine the depth maps obtained by Multi-View Stereo (MVS) through iterative optimization of the Neural Radiance Field (NeRF). MVS accurately estimates the depths on object surfaces, and NeRF accurately estimates the depths at object boundaries. The key ideas of the proposed method are to combine MVS and NeRF to utilize the advantages of both in depth map estimation and to use NeRF for depth map refinement. We also introduce a Huber loss into the NeRF optimization to improve the accuracy of the depth map refinement, where the Huber loss reduces the estimation error in the radiance fields by placing constraints on errors larger than a threshold. Through a set of experiments using the Redwood-3dscan dataset and the DTU dataset, which are public datasets consisting of multi-view images, we demonstrate the effectiveness of the proposed method compared to conventional methods: COLMAP, NeRF, and DS-NeRF.

本文言語英語
論文番号68
ジャーナルJournal of Imaging
10
3
DOI
出版ステータス出版済み - 2024 3月

フィンガープリント

「Neural Radiance Field-Inspired Depth Map Refinement for Accurate Multi-View Stereo †」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル