New spherical (2 s + 1) -designs from Kuperberg's set: An experimental result

Mohammad Samy Baladram, Djoko Suprijanto

研究成果: ジャーナルへの寄稿学術論文査読

抄録

In 2005, Kuperberg proved that 2s points ±z1±z2±⋯±zs form a Chebyshev-type (2s+1)-quadrature formula on [-1,1] with constant weight if and only if the zi's are the zeros of polynomialQ(x)=xs-xs-13+xs-245-⋯+(-1) s1·3·15⋯(4s-1).The Kuperberg's construction on Chebyshev-type quadrature formula above may be regarded as giving an explicit construction of spherical (2s+1)-designs in the Euclidean space of dimension 3. Motivated by the Kuperberg's result, in this paper, we observe an experimental construction of spherical (2s+1)-designs, for certain s, from the Kuperberg set of the form ± a1± a2±⋯± as in the Euclidean spaces of certain dimensions d≥4.

本文言語英語
ページ(範囲)45-52
ページ数8
ジャーナルApplied Mathematics and Computation
249
DOI
出版ステータス出版済み - 2014 12月 15

フィンガープリント

「New spherical (2 s + 1) -designs from Kuperberg's set: An experimental result」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル