New strongly regular graphs from finite geometries via switching

Ferdinand Ihringer, Akihiro Munemasa

研究成果: Article査読

4 被引用数 (Scopus)

抄録

We show that the strongly regular graph on non-isotropic points of one type of the polar spaces of type U(n,2), O(n,3), O(n,5), O+(n,3), and O(n,3) are not determined by its parameters for n≥6. We prove this by using a variation of Godsil-McKay switching recently described by Wang, Qiu, and Hu. This also results in a new, shorter proof of a previous result of the first author which showed that the collinearity graph of a polar space is not determined by its spectrum. The same switching gives a linear algebra explanation for the construction of a large number of non-isomorphic designs.

本文言語English
ページ(範囲)464-474
ページ数11
ジャーナルLinear Algebra and Its Applications
580
DOI
出版ステータスPublished - 2019 11月 1

ASJC Scopus subject areas

  • 代数と数論
  • 数値解析
  • 幾何学とトポロジー
  • 離散数学と組合せ数学

フィンガープリント

「New strongly regular graphs from finite geometries via switching」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル