Noncommutative deformation of spinor zero mode and Atiyah-Drinfeld-Hitchin-Manin construction

Yoshiaki Maeda, Akifumi Sako

    研究成果: Article査読

    3 被引用数 (Scopus)

    抄録

    A method to construct noncommutative instantons as deformations from commutative instantons was provided by Maeda and Sako [J. Geom. Phys.58, 1784 (2008)]10.1016/j.geomphys.2008.08.006. Using this noncommutative deformed instanton, we investigate the spinor zero modes of the Dirac operator in a noncommutative instanton background on noncommutative R 4, and we modify the index of the Dirac operator on the noncommutative space slightly and show that the number of the zero mode of the Dirac operator is preserved under the noncommutative deformation. We prove the existence of the Green's function associated with instantons on noncommutative R 4, as a smooth deformation of the commutative case. The feature of the zero modes of the Dirac operator and the Green's function derives noncommutative ADHM (Atiyah-Drinfeld-Hitchin-Manin) equations which coincide with the ones introduced by Nekrasov and Schwarz. We show a one-to-one correspondence between the instantons on noncommutative R 4 and ADHM data. An example of a noncommutative instanton and a spinor zero mode are also given.

    本文言語English
    論文番号022303
    ジャーナルJournal of Mathematical Physics
    53
    2
    DOI
    出版ステータスPublished - 2012 2月 2

    ASJC Scopus subject areas

    • 統計物理学および非線形物理学
    • 数理物理学

    フィンガープリント

    「Noncommutative deformation of spinor zero mode and Atiyah-Drinfeld-Hitchin-Manin construction」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

    引用スタイル