Nonlinear identification of skeletal muscle dynamics with Sigma-Point Kalman Filter for model-based FES

Mitsuhiro Hayashibe, Philippe Poignet, David Guiraud, Hassan El Makssoud

研究成果: Conference contribution

13 被引用数 (Scopus)

抄録

A model-based FES would be very helpful for the adaptive movement synthesis of spinal-cord-injured patients. For the fulfillment, we need a precise skeletal muscle model to predict the force of each muscle. Thus, we have to estimate many unknown parameters in the nonlinear muscle system. The identification process is essential for the realistic force prediction. We previously proposed a mathematical muscle model of skeletal muscle which describes the complex physiological system of skeletal muscle based on the macroscopic Hill-Maxwell and microscopic Huxley concepts. It has an original skeletal muscle model to enable consideration for the muscular masses and the viscous frictions caused by the muscle-tendon complex. In this paper, we present an experimental identification method of biomechanical parameters using Sigma-Point Kalman Filter applied to the nonlinear skeletal muscle model. Result of the identification shows its effective performance. The evaluation is provided by comparing the estimated isometric force with experimental data with the stimulation of the rabbit medial gastrocnemius muscle. This approach has the advantage of fast and robust computation, that can be implemented for online application of FES control.

本文言語English
ホスト出版物のタイトル2008 IEEE International Conference on Robotics and Automation, ICRA 2008
ページ2049-2054
ページ数6
DOI
出版ステータスPublished - 2008
外部発表はい
イベント2008 IEEE International Conference on Robotics and Automation, ICRA 2008 - Pasadena, CA, United States
継続期間: 2008 5月 192008 5月 23

出版物シリーズ

名前Proceedings - IEEE International Conference on Robotics and Automation
ISSN(印刷版)1050-4729

Other

Other2008 IEEE International Conference on Robotics and Automation, ICRA 2008
国/地域United States
CityPasadena, CA
Period08/5/1908/5/23

ASJC Scopus subject areas

  • ソフトウェア
  • 制御およびシステム工学
  • 人工知能
  • 電子工学および電気工学

フィンガープリント

「Nonlinear identification of skeletal muscle dynamics with Sigma-Point Kalman Filter for model-based FES」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル