抄録
It is pointed out that the polynomial-time scaling algorithm by Hochbaum does not work correctly for the general resource allocation problem. Hochbaum's algorithm increases a variable by one unit if the variable cannot feasibly be increased by the scaling unit. We modify the algorithm to increase such a variable by the largest possible amount and show that with this modification the algorithm works correctly. The effect is to modify the factor F in the running time of Hochbaum's algorithm for finding whether a certain solution is feasible by the factor F̃ of finding the maximum feasible increment (also called the saturation capacity). Therefore, the corrected algorithm runs in O(n(log n + F̃) log(B/n)) time.
本文言語 | English |
---|---|
ページ(範囲) | 394-397 |
ページ数 | 4 |
ジャーナル | Mathematics of Operations Research |
巻 | 29 |
号 | 2 |
DOI | |
出版ステータス | Published - 2004 5月 1 |
ASJC Scopus subject areas
- 数学 (全般)
- コンピュータ サイエンスの応用
- 経営科学およびオペレーションズ リサーチ