On poisson operators and dirichlet-neumann maps in Hs for divergence form elliptic operators with lipschitz coefficients

Yasunori Maekawa, Hideyuki Miura

研究成果: Article査読

3 被引用数 (Scopus)

抄録

We consider second order uniformly elliptic operators of divergence form in Rd+1 whose coefficients are independent of one variable. Under the Lipschitz condition on the coefficients we characterize the domain of the Poisson operators and the Dirichlet-Neumann maps in the Sobolev space Hs(Rd) for each s∈[0,1]. Moreover, we also show a factorizationformula for the elliptic operator in terms of the Poisson operator.

本文言語English
ページ(範囲)6227-6252
ページ数26
ジャーナルTransactions of the American Mathematical Society
368
9
DOI
出版ステータスPublished - 2016

ASJC Scopus subject areas

  • 数学 (全般)
  • 応用数学

フィンガープリント

「On poisson operators and dirichlet-neumann maps in Hs for divergence form elliptic operators with lipschitz coefficients」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル