On the Routing Problems in Graphs with Ordered Forbidden Transitions

研究成果: 書籍の章/レポート/Proceedings会議への寄与査読

抄録

Finding a path between two vertices of a given graph is one of the most classic problems in graph theory. Recently, problems of finding a route avoiding forbidden transitions, that is, two edges that cannot be passed through consecutively, have been studied. In this paper, we introduce the ordered variants of these problems, namely the Path Avoiding Ordered Forbidden Transitions problem (PAOFT for short) and the Trail Avoiding Ordered Forbidden Transitions problem (TAOFT for short). We show that both the problems are NP-complete even for bipartite planar graphs with maximum degree three. Since the problems are solvable for graphs with maximum degree two, the NP-completeness results are tight with respect to the maximum degree of a graph. Furthermore, we show that TAOFT remains NP-complete for cactus graphs. As positive results of PAOFT, we give a polynomial-time algorithm for bounded treewidth graphs and a linear-time algorithm for cactus graphs.

本文言語英語
ホスト出版物のタイトルComputing and Combinatorics - 29th International Conference, COCOON 2023, Proceedings
編集者Weili Wu, Guangmo Tong
出版社Springer Science and Business Media Deutschland GmbH
ページ359-370
ページ数12
ISBN(印刷版)9783031491894
DOI
出版ステータス出版済み - 2024
イベント29th International Computing and Combinatorics Conference, COCOON 2023 - Hawaii, 米国
継続期間: 2023 12月 152023 12月 17

出版物シリーズ

名前Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
14422 LNCS
ISSN(印刷版)0302-9743
ISSN(電子版)1611-3349

会議

会議29th International Computing and Combinatorics Conference, COCOON 2023
国/地域米国
CityHawaii
Period23/12/1523/12/17

フィンガープリント

「On the Routing Problems in Graphs with Ordered Forbidden Transitions」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル