8 被引用数 (Scopus)

抄録

Background: Biobanks increasingly collect, process and store omics with more conventional epidemiologic information necessitating considerable effort in data cleaning. An efficient outlier detection method that reduces manual labour is highly desirable. Method: We develop an unsupervised machine-learning method for outlier detection, namely kurPCA, that uses principal component analysis combined with kurtosis to ascertain the existence of outliers. In addition, we propose a novel regression adjustment approach to improve detection, namely the regression adjustment for data by systematic missing patterns (RAMP). Result: Application to epidemiological record data in a large-scale biobank (Tohoku Medical Megabank Organization, Japan) shows that a combination of kurPCA and RAMP effectively detects known errors or inconsistent patterns. Conclusions: We confirm through the results of the simulation and the application that our methods showed good performance. The proposed methods are useful for many practical analysis scenarios.

本文言語English
論文番号dyz012
ページ(範囲)1305-1315
ページ数11
ジャーナルInternational Journal of Epidemiology
48
4
DOI
出版ステータスPublished - 2019 8月 1

ASJC Scopus subject areas

  • 疫学

フィンガープリント

「Outlier detection for questionnaire data in biobanks」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル