Parallel implementation of motif-based clustering for HT-SELEX dataset

Takayoshi Ono, Shintaro Kato, Koichi Ito, Hirotaka Minagawa, Katsunori Horii, Ikuo Shiratori, Iwao Waga, Takafumi Aoki

研究成果: 書籍の章/レポート/Proceedings会議への寄与査読

抄録

A clustering method for high-throughput sequencing with SELEX pools (HT-SELEX) is crucial for selecting different types of aptamer candidates. The fast and accurate clustering method is indispensable for an enormous sequence data produced by HT-SELSEX. We have already developed a fast motif-based clustering (FMBC) method for HT-SELEX data implemented by R language. FMBC exhibited high accuracy of sequence clustering compared with conventional methods, while the processing time of FMBC is longer than AptaCluster. This paper proposes the parallel implementation of FMBC using Python with multi-threading to improve the performance of FMBC. Experimental evaluation using the NCBI SRA data of SRR3279661 from BioProject PRJNA315881 demonstrated that parallel FMBC exhibited higher accuracy of clustering and shorter processing time than conventional methods.

本文言語英語
ホスト出版物のタイトルProceedings - 2019 IEEE 19th International Conference on Bioinformatics and Bioengineering, BIBE 2019
出版社Institute of Electrical and Electronics Engineers Inc.
ページ50-55
ページ数6
ISBN(電子版)9781728146171
DOI
出版ステータス出版済み - 2019 10月
イベント19th International Conference on Bioinformatics and Bioengineering, BIBE 2019 - Athens, ギリシャ
継続期間: 2019 10月 282019 10月 30

出版物シリーズ

名前Proceedings - 2019 IEEE 19th International Conference on Bioinformatics and Bioengineering, BIBE 2019

会議

会議19th International Conference on Bioinformatics and Bioengineering, BIBE 2019
国/地域ギリシャ
CityAthens
Period19/10/2819/10/30

フィンガープリント

「Parallel implementation of motif-based clustering for HT-SELEX dataset」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル