Passive swimming of a microcapsule in vertical fluid oscillation

研究成果: Article査読

9 被引用数 (Scopus)

抄録

The artificial microswimmer is a cutting-edge technology with applications in drug delivery and micro-total-analysis systems. The flow field around a microswimmer can be regarded as Stokes flow, in which reciprocal body deformation cannot induce migration. In this study, we propose a microcapsule swimmer that undergoes amoeboidlike shape deformations under fluid oscillation conditions. This is a study on the propulsion principle using a capsule with a solid membrane, and one of only a few studies using fluid oscillation. The microswimmer consists of an elastic capsule containing fluid and a rigid sphere. Opposing forces are generated when fluid oscillations are applied, because the densities of the internal fluid and sphere are different. The opposing forces induce nonreciprocal body deformation, which leads to migration of the microswimmer under Stokes flow conditions. Using numerical simulations, we found that the microswimmer propels itself in one of two modes, i.e., stroke swimming or drag swimming. We discuss the feasibility of the proposed microswimmer and show that the most efficient swimmer can migrate tens of micrometers per second. These findings pave the way for future artificial microswimmer designs.

本文言語English
論文番号023108
ジャーナルPhysical Review E
98
2
DOI
出版ステータスPublished - 2018 8月 27

ASJC Scopus subject areas

  • 統計物理学および非線形物理学
  • 統計学および確率
  • 凝縮系物理学

フィンガープリント

「Passive swimming of a microcapsule in vertical fluid oscillation」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル