Pattern Recognition of Partial Discharge Faults Using Convolutional Neural Network (CNN)

Jakrin Butdee, Waree Kongprawechnon, Hiroki Nakahara, Nattapon Chayopitak, Cherdsak Kingkan, Ruchao Pupadubsin

研究成果: 書籍の章/レポート/Proceedings会議への寄与査読

6 被引用数 (Scopus)

抄録

Partial Discharge (PD) analysis is one the most widely used methods to monitor and determine the fault conditions of electrical equipment, especially in high-voltage environments such as power transformers and power generators. Conventional method of PD analysis that is widely used in multiple studies and commercial equipment usually rely on a feature extraction technique such as the Phase Resolved Partial Discharge (PRPD) Pattern to assist PD experts to inspect the faults in the system. This study proposes a CNN based method to recognize the PRPD patterns for different types of PD. The differences of each type of PD, data pre-processing steps and visualization of PD waveforms in PRPD patterns are discussed in details. The obtained PRPD pattern images are then used to train a pattern recognition model and the results show that the proposed method can effectively classify different types of PD under consideration.

本文言語英語
ホスト出版物のタイトル2023 8th International Conference on Control and Robotics Engineering, ICCRE 2023
出版社Institute of Electrical and Electronics Engineers Inc.
ページ61-66
ページ数6
ISBN(電子版)9798350345650
DOI
出版ステータス出版済み - 2023
イベント8th International Conference on Control and Robotics Engineering, ICCRE 2023 - Niigata, 日本
継続期間: 2023 4月 212023 4月 23

出版物シリーズ

名前2023 8th International Conference on Control and Robotics Engineering, ICCRE 2023

会議

会議8th International Conference on Control and Robotics Engineering, ICCRE 2023
国/地域日本
CityNiigata
Period23/4/2123/4/23

フィンガープリント

「Pattern Recognition of Partial Discharge Faults Using Convolutional Neural Network (CNN)」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル