抄録

Metamagnetic shape memory alloys (MMSMAs) are attractive functional materials owing to their unique properties such as magnetostrain, magnetoresistance, and the magnetocaloric effect caused by magnetic-field-induced transitions. However, the energy loss during the martensitic transformation, that is, the dissipation energy, Edis, is sometimes large for these alloys, which limits their applications. In this paper, a new Pd2MnGa Heusler-type MMSMA with an extremely small Edis and hysteresis is reported. The microstructures, crystal structures, magnetic properties, martensitic transformations, and magnetic-field-induced strain of aged Pd2MnGa alloys are investigated. A martensitic transformation from L21 to 10M structures is seen at 127.4 K with a small thermal hysteresis of 1.3 K. The reverse martensitic transformation is induced by applying a magnetic field with a small Edis (= 0.3 J mol−1 only) and a small magnetic-field hysteresis (= 7 kOe) at 120 K. The low values of Edis and the hysteresis may be attributed to good lattice compatibility in the martensitic transformation. A large magnetic-field-induced strain of 0.26% is recorded, indicating the proposed MMSMA's potential as an actuator. The Pd2MnGa alloy with low values of Edis and hysteresis may enable new possibilities for high-efficiency MMSMAs.

本文言語英語
論文番号2207779
ジャーナルAdvanced Science
10
23
DOI
出版ステータス出版済み - 2023 8月 15

フィンガープリント

「Pd2MnGa Metamagnetic Shape Memory Alloy with Small Energy Loss」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル