Pedestrian flow estimation using sparse observation for autonomous vehicles

研究成果: 書籍の章/レポート/Proceedings会議への寄与査読

1 被引用数 (Scopus)

抄録

One of the major challenges that autonomous cars are facing today is the unpredictability of pedestrian movement in urban environments. Since pedestrian data acquired by vehicles are sparse observed a pedestrian flow directed graph is proposed to understand pedestrian behavior. In this work, an autonomous electric vehicle is employed to gather LiDAR and camera data. Pedestrian tracking information and semantic information from the environment are used with a probabilistic approach to create the graph. In order to refine the graph a set of outlier removal techniques are described. The graph-based pedestrian flow shows an increase of 61.29 % of coverage zone, and the outlier removal approach successfully removed 81 % of the edges.

本文言語英語
ホスト出版物のタイトル2019 19th International Conference on Advanced Robotics, ICAR 2019
出版社Institute of Electrical and Electronics Engineers Inc.
ページ779-784
ページ数6
ISBN(電子版)9781728124674
DOI
出版ステータス出版済み - 2019 12月
イベント19th International Conference on Advanced Robotics, ICAR 2019 - Belo Horizonte, ブラジル
継続期間: 2019 12月 22019 12月 6

出版物シリーズ

名前2019 19th International Conference on Advanced Robotics, ICAR 2019

会議

会議19th International Conference on Advanced Robotics, ICAR 2019
国/地域ブラジル
CityBelo Horizonte
Period19/12/219/12/6

フィンガープリント

「Pedestrian flow estimation using sparse observation for autonomous vehicles」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル