Pose Estimation of Ultrasound Probe Using CNN and RNN with Image Reconstruction Loss

Kanta Miura, Koichi Ito, Takafumi Aoki, Jun Ohmiya

研究成果: 書籍の章/レポート/Proceedings会議への寄与査読

抄録

It is necessary to estimate the pose of the probe with high accuracy to reconstruct 3D ultrasound (US) images only from US image sequences scanned by a 1D-array probe. We propose the probe pose estimation method using Convolutional Neural Network (CNN) with training by image reconstruction loss. To calculate the image reconstruction loss, we use the image reconstruction network which consists of an encoder that extracts features from the two US images and a decoder that reconstructs the intermediate US image between the two images. CNN is trained to minimize the image reconstruction loss between the ground-truth image and the reconstructed image. Through experiments, we demonstrate that the proposed method exhibits efficient performance compared with the conventional methods.

本文言語英語
ホスト出版物のタイトル2023 45th Annual International Conference of the IEEE Engineering in Medicine and Biology Conference, EMBC 2023 - Proceedings
出版社Institute of Electrical and Electronics Engineers Inc.
ISBN(電子版)9798350324471
DOI
出版ステータス出版済み - 2023
イベント45th Annual International Conference of the IEEE Engineering in Medicine and Biology Conference, EMBC 2023 - Sydney, オーストラリア
継続期間: 2023 7月 242023 7月 27

出版物シリーズ

名前Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS
ISSN(印刷版)1557-170X

会議

会議45th Annual International Conference of the IEEE Engineering in Medicine and Biology Conference, EMBC 2023
国/地域オーストラリア
CitySydney
Period23/7/2423/7/27

フィンガープリント

「Pose Estimation of Ultrasound Probe Using CNN and RNN with Image Reconstruction Loss」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル