TY - JOUR
T1 - Possible application of an imaging plate to space radiation dosimetry.
AU - Ohuchi, Hiroko
AU - Yamadera, Akira
PY - 2002/12
Y1 - 2002/12
N2 - Fading correction plays an important role in the application of commercially available BaBrF:Eu2+ phosphors: imaging plates (IP) to dosimetry. We successfully determined a fading correction equation, which is a function of elapsed time and absolute temperature, as the sum of several exponentially decaying components having different half-lives. In this work, a new method was developed to eliminate a short half-life component by annealing the IP and estimating the radiation dose with the long half-life components. Annealing decreases the effect of fading on the estimated dose, however, it also causes the loss of photo-stimulated luminescence (PSL). Considering an IP as an integral detector for a specific period of up to one month, the practically optimum conditions for quantitative measurement with two types of IP (BAS-TR and BAS-MS) were evaluated by using the fading correction equation, which was obtained after irradiation with a 244Cm source as the alpha-ray source having a specific radioactivity of 1,638.5 Bq/cm2 including beta and gamma-ray (alpha energy of 5.763 and 5.805 MeV). Annealing at 80 degrees C for 24 hours after irradiation for one month using BAS-MS should minimize the effect of the elapsed time, resulting in sufficient sensitivity. The results demonstrate new possibilities for radiation dosimetry offered by the use of an IP.
AB - Fading correction plays an important role in the application of commercially available BaBrF:Eu2+ phosphors: imaging plates (IP) to dosimetry. We successfully determined a fading correction equation, which is a function of elapsed time and absolute temperature, as the sum of several exponentially decaying components having different half-lives. In this work, a new method was developed to eliminate a short half-life component by annealing the IP and estimating the radiation dose with the long half-life components. Annealing decreases the effect of fading on the estimated dose, however, it also causes the loss of photo-stimulated luminescence (PSL). Considering an IP as an integral detector for a specific period of up to one month, the practically optimum conditions for quantitative measurement with two types of IP (BAS-TR and BAS-MS) were evaluated by using the fading correction equation, which was obtained after irradiation with a 244Cm source as the alpha-ray source having a specific radioactivity of 1,638.5 Bq/cm2 including beta and gamma-ray (alpha energy of 5.763 and 5.805 MeV). Annealing at 80 degrees C for 24 hours after irradiation for one month using BAS-MS should minimize the effect of the elapsed time, resulting in sufficient sensitivity. The results demonstrate new possibilities for radiation dosimetry offered by the use of an IP.
UR - http://www.scopus.com/inward/record.url?scp=0038678563&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0038678563&partnerID=8YFLogxK
U2 - 10.1269/jrr.43.s71
DO - 10.1269/jrr.43.s71
M3 - Article
C2 - 12793734
AN - SCOPUS:0038678563
SN - 0449-3060
VL - 43 Suppl
SP - S71-74
JO - Journal of Radiation Research
JF - Journal of Radiation Research
ER -