Probe localization from ultrasound image sequences using deep learning for volume reconstruction

Kanta Miura, Koichi Ito, Takafumi Aoki, Jun Ohmiya, Satoshi Kondo

研究成果: 書籍の章/レポート/Proceedings会議への寄与査読

5 被引用数 (Scopus)

抄録

We propose a probe localization method only from ultrasound (US) image sequences using deep learning for three-dimensional (3D) US image reconstruction. The proposed method employs a convolutional neural network (CNN) to estimate the motion of the probe from two US images. Our CNN architecture consists of two parts: inplane and out-of-plane probe motion estimation. Two loss functions are introduced to guarantee the consistency of estimated motion of the probe between multiple frames. Through experiments, we demonstrate that the proposed method exhibits efficient performance on probe localization compared with the conventional method.

本文言語英語
ホスト出版物のタイトルInternational Forum on Medical Imaging in Asia 2021
編集者Ruey-Feng Chang
出版社SPIE
ISBN(電子版)9781510644205
DOI
出版ステータス出版済み - 2021
イベントInternational Forum on Medical Imaging in Asia 2021, IFMIA 2021 - Taipei, 台湾省、中華民国
継続期間: 2021 1月 242021 1月 26

出版物シリーズ

名前Proceedings of SPIE - The International Society for Optical Engineering
11792
ISSN(印刷版)0277-786X
ISSN(電子版)1996-756X

会議

会議International Forum on Medical Imaging in Asia 2021, IFMIA 2021
国/地域台湾省、中華民国
CityTaipei
Period21/1/2421/1/26

フィンガープリント

「Probe localization from ultrasound image sequences using deep learning for volume reconstruction」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル