Properties of some Hamiltonians describing topologically non-trivial fermionic systems

B. Mera, M. A.N. Araujo, V. R. Vieira

研究成果: Article査読

抄録

We introduce a Hamiltonian for fermions on a lattice and prove a theorem regarding its topological properties. We identify the topological criterion as a Z2-topological invariant p(k) (the Pfaffian polynomial). The topological invariant is not only the first Chern number, but also the sign of the Pfaffian polynomial coming from a notion of duality. Such Hamiltonian can describe non-trivial Chern insulators, single band superconductors or multiorbital superconductors. The topological features of these families are completely determined as a consequence of our theorem. Some specific model examples are explicitly worked out, with the computation of different possible topological invariants.

本文言語English
論文番号465501
ジャーナルJournal of Physics Condensed Matter
27
46
DOI
出版ステータスPublished - 2015 10月 28
外部発表はい

ASJC Scopus subject areas

  • 材料科学(全般)
  • 凝縮系物理学

フィンガープリント

「Properties of some Hamiltonians describing topologically non-trivial fermionic systems」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル