Reconfiguration of Spanning Trees with Degree Constraint or Diameter Constraint

Nicolas Bousquet, Yusuke Kobayashi, Paul Ouvrard, Kunihiro Wasa, Takehiro Ito, Haruka Mizuta, Akira Suzuki

研究成果: Conference contribution

抄録

We investigate the complexity of finding a transformation from a given spanning tree in a graph to another given spanning tree in the same graph via a sequence of edge flips. The exchange property of the matroid bases immediately yields that such a transformation always exists if we have no constraints on spanning trees. In this paper, we wish to find a transformation which passes through only spanning trees satisfying some constraint. Our focus is bounding either the maximum degree or the diameter of spanning trees, and we give the following results. The problem with a lower bound on maximum degree is solvable in polynomial time, while the problem with an upper bound on maximum degree is PSPACE-complete. The problem with a lower bound on diameter is NP-hard, while the problem with an upper bound on diameter is solvable in polynomial time.

本文言語English
ホスト出版物のタイトル39th International Symposium on Theoretical Aspects of Computer Science, STACS 2022
編集者Petra Berenbrink, Benjamin Monmege
出版社Schloss Dagstuhl- Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing
ISBN(電子版)9783959772228
DOI
出版ステータスPublished - 2022 3月 1
イベント39th International Symposium on Theoretical Aspects of Computer Science, STACS 2022 - Virtual, Marseille, France
継続期間: 2022 5月 152022 5月 18

出版物シリーズ

名前Leibniz International Proceedings in Informatics, LIPIcs
219
ISSN(印刷版)1868-8969

Conference

Conference39th International Symposium on Theoretical Aspects of Computer Science, STACS 2022
国/地域France
CityVirtual, Marseille
Period22/5/1522/5/18

ASJC Scopus subject areas

  • ソフトウェア

フィンガープリント

「Reconfiguration of Spanning Trees with Degree Constraint or Diameter Constraint」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル