Removability of time-dependent singularities of solutions to the Navier-Stokes equations

Hideo Kozono, Erika Ushikoshi, Fumitaka Wakabayashi

研究成果: ジャーナルへの寄稿学術論文査読

抄録

Let Ω be a bounded domain in RN and ξ∈Cα([0,T];Ω) for 1/N<α≤1. Suppose that u is a smooth solution of the Navier-Stokes equations in ⋃0<t<T(Ω∖{ξ(t)})×{t}, namely, ⋃0<t<T{ξ(t)}×{t} is supposed to be the set of moving singularities of u in Ω×[0,T]. We prove that if u(x,t)=o(|x−ξ(t)|−N+β)locally uniformly in t∈(0,T) as x→ξ(t) for β≡max⁡{1/α,N−1}, then u is, in fact, smooth in the whole region Ω×(0,T). Our result may be regarded as a theorem on removable time-dependent singularities of solutions to the Navier-Stokes equations.

本文言語英語
ページ(範囲)59-81
ページ数23
ジャーナルJournal of Differential Equations
388
DOI
出版ステータス出版済み - 2024 4月 15

フィンガープリント

「Removability of time-dependent singularities of solutions to the Navier-Stokes equations」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル