Right-truncatable neural word embeddings

Jun Suzuki, Masaaki Nagata

研究成果: 書籍の章/レポート/Proceedings会議への寄与査読

2 被引用数 (Scopus)

抄録

This paper proposes an incremental learning strategy for neural word embedding methods, such as SkipGrams and Global Vectors. Since our method iteratively generates embedding vectors one dimension at a time, obtained vectors equip a unique property. Namely, any right-truncated vector matches the solution of the corresponding lower-dimensional embedding. Therefore, a single embedding vector can manage a wide range of dimensional requirements imposed by many different uses and applications.

本文言語英語
ホスト出版物のタイトル2016 Conference of the North American Chapter of the Association for Computational Linguistics
ホスト出版物のサブタイトルHuman Language Technologies, NAACL HLT 2016 - Proceedings of the Conference
出版社Association for Computational Linguistics (ACL)
ページ1145-1151
ページ数7
ISBN(電子版)9781941643914
DOI
出版ステータス出版済み - 2016
イベント15th Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL HLT 2016 - San Diego, 米国
継続期間: 2016 6月 122016 6月 17

出版物シリーズ

名前2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL HLT 2016 - Proceedings of the Conference

会議

会議15th Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL HLT 2016
国/地域米国
CitySan Diego
Period16/6/1216/6/17

フィンガープリント

「Right-truncatable neural word embeddings」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル