TY - JOUR
T1 - SAND/3
T2 - SDN-assisted novel QoE control method for dynamic adaptive streaming over HTTP/3
AU - Guillen, Luis
AU - Izumi, Satoru
AU - Abe, Toru
AU - Suganuma, Takuo
N1 - Publisher Copyright:
© 2019 by the authors. Licensee MDPI, Basel, Switzerland.
PY - 2019/8
Y1 - 2019/8
N2 - Dynamic Adaptive Streaming over HTTP (DASH) is a widely used standard for video content delivery. Video traffic, most of which is generated from mobile devices, is shortly to become the most significant part of Internet traffic. Current DASH solutions only consider either client-or server-side optimization, leaving other components in DASH (e.g., at the transport layer) to default solutions that cause a performance bottleneck. In that regard, although it is assumed that HTTP must be necessarily transported on top of TCP, with the latest introduction of HTTP/3, it is time to re-evaluate its effects on DASH. The most substantial change in HTTP/3 is having Quick UDP Internet Connections (QUIC) as its primary underlying transport protocol. However, little is still know about the effects on standard DASH client-based adaption algorithms when exposed to the future HTTP/3. In this paper, we present SAND/3, an SDN (Software Defined Networking)-based Quality of Experience (QoE) control method for DASH over HTTP/3. Since the official deployment of HTTP/3 has not been released yet, we used the current implementation of Google QUIC. Preliminary results show that, by applying SAND/3, which combines information from different layers orchestrated by SDN to select the best QoE, we can obtain steadier media throughput, reduce the number of quality shifts in at least 40%, increase the amount downloaded content at least 20%, and minimize video interruptions compared to the current implementations regardless of the client adaption algorithm.
AB - Dynamic Adaptive Streaming over HTTP (DASH) is a widely used standard for video content delivery. Video traffic, most of which is generated from mobile devices, is shortly to become the most significant part of Internet traffic. Current DASH solutions only consider either client-or server-side optimization, leaving other components in DASH (e.g., at the transport layer) to default solutions that cause a performance bottleneck. In that regard, although it is assumed that HTTP must be necessarily transported on top of TCP, with the latest introduction of HTTP/3, it is time to re-evaluate its effects on DASH. The most substantial change in HTTP/3 is having Quick UDP Internet Connections (QUIC) as its primary underlying transport protocol. However, little is still know about the effects on standard DASH client-based adaption algorithms when exposed to the future HTTP/3. In this paper, we present SAND/3, an SDN (Software Defined Networking)-based Quality of Experience (QoE) control method for DASH over HTTP/3. Since the official deployment of HTTP/3 has not been released yet, we used the current implementation of Google QUIC. Preliminary results show that, by applying SAND/3, which combines information from different layers orchestrated by SDN to select the best QoE, we can obtain steadier media throughput, reduce the number of quality shifts in at least 40%, increase the amount downloaded content at least 20%, and minimize video interruptions compared to the current implementations regardless of the client adaption algorithm.
KW - DASH
KW - HTTP/3
KW - QUIC
KW - QoE
KW - SDN
UR - http://www.scopus.com/inward/record.url?scp=85070637682&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85070637682&partnerID=8YFLogxK
U2 - 10.3390/electronics8080864
DO - 10.3390/electronics8080864
M3 - Article
AN - SCOPUS:85070637682
SN - 2079-9292
VL - 8
JO - Electronics (Switzerland)
JF - Electronics (Switzerland)
IS - 8
M1 - 864
ER -